УДК 621.791.76

## Бондаренко А. Ф., Сидорец В. Н., Бондаренко Ю. В.

## СОВЕРШЕНСТВОВАНИЕ ИСТОЧНИКОВ ПИТАНИЯ ДЛЯ КОНТАКТНОЙ МИКРОСВАРКИ

Для получения высококачественных сварных соединений деталей ответственного назначения посредством контактной микросварки, важным является обеспечение отсутствия таких дефектов, как выплески металла, непровары и прожоги, а также обеспечение высокой повторяемости параметров сварных точек [1, 2].

Поскольку качество сварных соединений непосредственно зависит от электрических и механических параметров сварочного оборудования, целью данной работы является совершенствование источников питания для установок контактной микросварки в направлении согласованного формирования законов изменения сварочного тока и давления электродов.

Согласно данным отечественных и зарубежных публикаций, высокого качества соединений можно достичь путем формирования (программирования) специальных законов изменения сварочного тока, напряжения на сварочном контакте или мощности, выделяемой в зоне сварки [1, 3–5]. При этом используются следующие формы импульсов (рис. 1):

- импульс со сглаженным передним и / или задним фронтом;
- сдвоенный импульс, первый из которых подогревающий, меньшей амплитуды;
- импульс сложной формы, комбинация первых двух разновидностей.

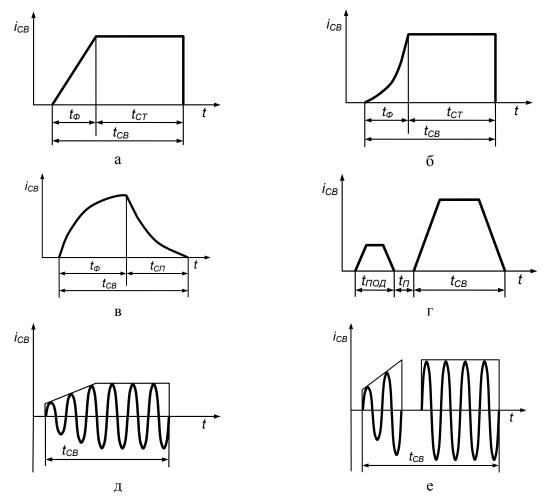



Рис. 1. Программирование формы импульсов тока для микросварки

На рис. 1 обозначены:  $t_{CB}$  — длительность сварки;  $t_{\Phi}$  — длительность фронта импульса тока;  $t_{CH}$  — длительность опада импульса тока;  $t_{CT}$  — длительность этапа стабилизации тока;  $t_{\Pi O \mathcal{I}}$  — длительность подогревающего импульса;  $t_{H}$  — длительность паузы между импульсами тока.

Сглаживание переднего фронта сварочного импульса способствует более «спокойному» формированию сварного соединения, чем при использовании прямоугольной формы импульса, поскольку разрушение оксидных пленок и смятие микронеровностей поверхностей свариваемых деталей на начальном этапе сварки в этом случае происходит медленнее, а плотность тока, протекающего через первичные контактные площадки, значительно ниже критической, при которой возможны выплески металла. Программирование плавного спада сварочного импульса обеспечивает постепенное снижение температуры в зоне сварки на завершающем этапе, в результате чего достигается однородное затвердевание сварочного ядра.

При использовании подогревающего импульса достигается снижение разброса начальных значений контактных сопротивлений, и, как следствие, процесс ввода тепла в сварочный контакт становится более прогнозируемым, уменьшается вероятность локального перегрева металла, который приводит к выплескам.

Поиск оптимальных законов изменения электрических параметров сварочных импульсов для различных условий сварки, определяемых материалами, толщинами, состоянием поверхности и конфигурацией свариваемых деталей, наиболее целесообразно осуществлять в лабораторных условиях методом опытного подбора [1, 2, 4].

Следует отметить, что уменьшения значений и разброса переходных сопротивлений, а, соответственно, и повышения качества соединений можно также достичь путем программирования закона изменения давления сварочных электродов (рис. 2) [1, 2, 6]. При этом сварочный ток может подаваться в виде прямоугольного импульса, без формирования какоголибо специального закона.

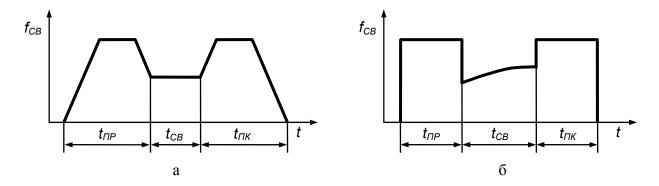



Рис. 2. Программирование закона изменения давления сварочных электродов

На рис. 2 обозначены:  $f_{CB}$  — сила давления сварочных электродов;  $t_{\Pi P}$  — длительность предварительного сжатия электродов;  $t_{CB}$  — длительность основного этапа сварки;  $t_{\Pi K}$  — длительность окончательной обработки (проковки).

Кроме того используют согласованное программирование закона изменения сварочного тока и закона изменения давления электродов, которое заключается в том, что этапы формирования импульса сварочного тока находятся в полном соответствии с определенными фазами программы давления электродов (рис. 3) [1, 6]. Так, импульс предварительного подогрева или начальное нарастание тока должны совпадать по времени с предварительным сжатием электродов, основной этап сварки максимальным током должен соответствовать минимальному давлению, а на этапе проковки ток должен плавно снижаться либо вовсе отсутствовать. При таком согласовании закона изменения тока и программы давления электродов минимизируется и стабилизируется сопротивление зоны сварки, что в конечном итоге положительно отражается на качестве сварных соединений.

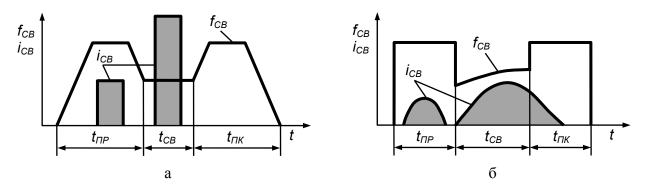



Рис. 3. Согласованное формирование сварочного тока и давления электродов

Следует, однако, отметить, что программирование и контроль механических параметров (перемещения электродов, давления) используется, в основном, при контактной сварке деталей более крупных размеров, чем это характерно для микросварки. Сложности при формировании закона изменения давления электродов в процессе контактной микросварки связаны с тем, что ее длительность очень мала и может составлять единицы миллисекунд, в то время как механическая система достаточно инерционна и не может обеспечить эффективное использование обратных связей контуров регулирования, необходимое для точной отработки заданной программы [6].

Таким образом, существует определенная проблема в реализации согласованного формирования закона изменения сварочного тока и закона изменения давления электродов установки контактной микросварки.

Решение данной проблемы видится в максимально возможном снижении инерционности всех электрических и механических узлов сварочной установки за счет использования современных быстродействующих полупроводниковых приборов, высокоточных малоинерционных датчиков и исполнительных устройств при построении источников питания для контактной микросварки.

На рис. 4 предложена обобщенная структура установки для контактной микросварки, построенная в соответствии с принципом минимизации ее инерционности.

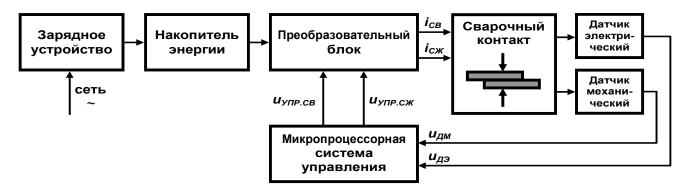



Рис. 4. Структура установки контактной микросварки

На рис. 4 обозначены:  $i_{CB}$  — сварочный ток;  $i_{CW}$  — ток сжатия электродов;  $u_{V\Pi P.CB}$  — напряжение управления источником сварочного тока;  $u_{V\Pi P.CW}$  — напряжение управления источником тока сжатия электродов;  $u_{\mathcal{I}\mathcal{I}}$  — напряжение с электрического датчика;  $u_{\mathcal{I}\mathcal{I}}$  — напряжение с механического датчика.

В структуре на рис. 4 можно выделить два независимых контура регулирования: по уровню сварочного тока (либо напряжения на сварочных электродах, либо мощности) и по перемещению электродов.

Преобразовательный блок включает в себя два преобразователя: источник-формирователь сварочного тока и источник тока, управляющий сжатием электродов. Использование мощных быстродействующих транзисторов для построения преобразовательного блока и накопителя энергии на основе батареи низковольтных электролитических конденсаторов (либо комбинированного источника аккумуляторная батарея – конденсаторы) позволяет отказаться от применения согласующего трансформатора на выходе источника, который, как правило, вносит существенную инерционность в электрический контур регулирования. При этом возможность протекания сварочного тока требуемого уровня (сотни ампер) может быть обеспечена путем параллельного соединения силовых транзисторов или объединения их в модульные структуры.

Микропроцессорная система управления позволяет задавать требуемые законы изменения электрического тока (напряжения, мощности) и программы давления электродов, а также оперативно их корректировать.

В качестве электрического датчика, отслеживающего уровень сварочного тока, может быть использован безындуктивный шунт.

В качестве механического датчика, отслеживающего перемещение сварочных электродов, перспективным представляется использование современного типа приборов — микроэлектромеханических (MEMS) акселерометров, измерительные системы на базе которых обладают высокой чувствительностью к перемещениям (доли микрон) и имеет высокое быстродействие (доли миллисекунд).

Важную роль в минимизации инерционности системы играет также конструкция сварочных электродов и тип исполнительного устройства, приводящего их в движение. С одной стороны, электроды должны обеспечивать достаточное усилие сжатия, а с другой — иметь минимальную массу. Перспективным в данной части представляется использование системы сжатия электродинамического типа.

## ВЫВОДЫ

Таким образом, применение современной элементной базы открывает новые возможности для совершенствования источников питания установок контактной микросварки в направлении обеспечения согласованного регулирования как электрических, так и механических параметров в процессе сварки, что, в свою очередь, позволит повысить качество сварных соединений и повторяемость их параметров.

## СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1. Атауш В. Е. Микросварка в приборостроении / В. Е. Атауш, В. П. Леонов, Э. Г. Москвин. Рига : PTV, 1996. 332 с.
- 2. Моравский В. Э. Технология и оборудование для точечной и рельефной конденсаторной сварки / В. Э. Моравский, Д. С. Ворона. Киев : Наук. думка, 1985. 272 с.
- 3. Леонов В. П. Малоинерционный источник питания для микросварки и пайки с обратной связью по электроэнергетическим параметрам / В. П. Леонов, В. Е. Атауш // Припои для пайки современных материалов. Киев: ИЭС им. Е. О. Патона, 1985. С. 133–139.
- 4. Бондаренко А. Ф. Формирователи импульсов тока для установок контактной микросварки : дис. ... канд. техн. наук : 05.09.12 / Бондаренко Александр Федорович. Алчевск, 2007. 211 с.
- 5. Слободян М. С. Стабилизация качества соединений при контактной точечной микросварке деталей из циркониевого сплава Э110: автореф. дис. на соискание науч. степени канд. техн. наук: 05.03.06 / Слободян Михаил Степанович. Барнаул, 2009. 16 с.
- 6. Устройства для ударной обработки сварного шва в процессе точечной контактной сварки / [А. С. Письменный, И. В. Пентегов, В. М. Кислицын и др.] // Автоматическая сварка. -2011. -№ 1. С. 52–55.